
Kentech Instruments Ltd

OPERATIONS MANUAL

for

PLPS

Serial no. J02*****

24/02/03

Kentech Instruments Limited, Unit 9, Hall Farm Workshops, South Moreton, Oxfordshire OX11 9AG, U.K.
International Tel: +44 1235 510 748 International Fax: +44 1235 510 722

email info@kentech.co.uk Web : http://www.kentech.co.uk/

CONTENTS

(i) Disclaimer
(ii) EMC
1 Introduction
2 Specifications
3 Use
4 Software

(i) DISCLAIMER

There are high voltage power supplies (1.5kV) present in this instrument when the unit is operating. Do
not remove any covers from the PLPS or expose any part of its circuitry. In the event of malfunction, the
PLPS must be returned to Kentech Instruments Ltd or its appointed agent for repair.

Kentech Instruments Ltd accepts no responsibility for any electric shock or injury arising from use or misuse of this
product. It is the responsibility of the user to exercise care and common sense with this highly performance
equipment.

The accessible terminals of this instrument are protected from hazardous voltages by basic insulation and

protective grounding via the IEC power input connector. It is essential that the ground terminal of this

connector is earthed via the power lead to maintain this protection.

If cleaning is necessary this should be performed with a soft dry cloth or tissue only.

(ii) EMC warning

 PLPS programmable laser pulse shaper

This equipment includes circuits intentionally designed to generate fast rise, high voltage signals and the EM
emissions will be sensitive to the details of the load. If the PLPS is used with the pockels cell provided then EM
emissions will fall within EN55011 Emissions Specification for Industrial, Scientific and Medical equipment
however the use of other types of pockels cell or other loads may result on emissions which exceed these levels.

1 INTRODUCTION

The PLPS programmable laser pulse shaper is a user programmable high voltage digital to analogue converter driven
by fast ram and controlled by an embedded microcontroller. The PLPS is supplied with a modulator which may be
driven between maximum transmission and maximum extinction under software control.

The sample rate is nominally 150MHz and the electrical risetime at the pockels cell is nominally 20nsecs (i.e. there
are three samples per unit risetime).

The PLPS is designed to compensate for gain depletion in long pulse laser amplification systems. The maximum
electrical pulse duration is 10us, which corresponds to nominally 1500 voltage samples.

The maximum output voltage is >700V which corresponds to 100% gain modulation at 1.3um with the modulator
provided.

The modulator uses a Y-cut lithium tantalate crystal in which the field is applied longitudinally. There is usually
some intrinsic birefringence in such modulators and a DC bias is provided to minimise the transmission the zero
programme setting.

2 SPECIFICATIONS

Optical modulator
Lithium tantalate amplitude modulator for 1-1.3um operation comprising matched pair of 4 x 4 x 17mm Y-cut
crystals in temperature compensating arrangement to give half wave voltage of ~7--V (at 1.3um). Crystal capacitance
~23pF. Single layer AR coating. Single sided SMA connector.

Fixing centres:
2 x M3 tapped holes, 15mm spacing across optical axis.

Electrical drive
Rise/fall ~20ns
Load <=30pF
Duration <=10us
Sample rate ~150MHz
Number of samples 1500 (3000 bytes)
Trigger TTL
Proportional monitor ~2V into 50ohms, divided down from output
Interface RS232, 9600 baud
Power 100-240V ac, >30VA

Controls/indicators
AC power Rocker
Trigger input BNC
Modulator drive SMA on short flying lead
Porportional monitor BNC
PC bias Screwdriver access
Power LED Red
Triggered LED Green
Load LED Amber
Save/recall LED Amber

3 USE

The PLPS will normally be mounted over the modulator. Tapped spacers are provided on the base of the electronics
assembly to fit suitable supports. The modulator has two tapped holes on its base to allow the mounting of it to an
adjustable optical mount.

It is assumed that the user s familiar with the use of optical modulators and will provide suitable optics (such as a
polarizer) and will align these optics appropriately.

Attach the PLPS to the modulator with the short flying SMA lead on the base of the electronics assembly.

A dumb RS232 terminal or computer with an emulator programme will be required to programme the PLPS.

The 9 pin RS232 connector pins are:

2 RS232, out
3 RS232, in
5 Ground

The electrical waveform at the modulator may be viewed via the proportional monitor output. This signal is divided
down from the signal at the modulator.

The optical modulator function is quite non-linear, not least because of the sin-squared behaviour of the optical
modulator. The user must provide suitable programming data in order to produce the required optical waveform.

The modulator will in general have some inherent birefringence and a bias potential will be required to minimise
optical transmission. There is an internal bias supply which may be adjusted via the pockels cell bias hole on the
side of the PSU. A small electrical screwdriver will be required. This adjustment provided a DC bias between 0 and
~250V. Set this voltage to give minimum optical transmission.

The sample clock is a quick start oscillator based on a resonant transmission line so the sample frequency is NOT
crystal referenced. If the sample timing is critical we suggest that a calibration parameter is included in any host PC
control application to define the time per sample, which should be determined by measurement.

4 SOFTWARE

At power up the PLPS will look at the state of the start-up selector switch

and will initialise with either a null waveform or WFM0 or WFM1. This process

takes a few seconds.

The Save/recall LED indicates access to the internal NV memory. The Load LED

indicates that the fast RAM array is being programmed.

When a trigger signal is received the triggered LED will be illuminated for a

short while.

After initialisation the PLPS will issue a banner message.

The internal microprocessor runs a Forth operating system and all commands are

Forth definitions. Commands must be upper case and are followed by a <CR>.

Correct interpretation and execution of a command is followed by an OK prompt.

An error will cause an error message to be returned.

The local processor keeps the waveform in RAM and downloads it to the DAC RAM

when instructed.

We suggest that the first thing to try is to set up a dumb terminal and try

typing commands to the PLPS from the keyboard. Each <CR> will result in an OK

prompt - this is a good way to check that the link is alive.

There follows a typical RS232 dialogue with the PLPS. The baud rate is 9600, 8

data bits, 1 stop bit, no parity.

The typed text is in red, the response is in black. Note that the PLPS echoes

back all characters in the command line.

The text in blue is a description of the command above and is not part of the

dialogue.

Power up - 3 second delay then:

Programmable Laser Pulse Shaper

Copyright Kentech Instruments Ltd 2003

Firmware V1.0

<CR> ok

-EN_TRIG <CR> ok

Stop triggering

<CR> ok

<CR> ok

<CR> ok

<CR> ok

<CR> ok

<CR> ok

<CR> results in an ‘ok’ response i.e. the local processor is alive and well

+EN_TRIG <CR> ok

Restart triggering

0WFM <CR> ok

Fill RAM image of waveform with zeros

0 2000 0 50 RAMP <CR> ok

Generate a ramp going from 0 to 2000, starting at sample 0 and ending at 50

0 0 50 100 RAMP <CR> ok

0 3000 101 140 RAMP <CR> ok

3000 2000 141 150 RAMP <CR> ok

2000 2000 151 200 RAMP <CR> ok

0 0 201 250 RAMP <CR> ok

1000 1000 251 270 RAMP <CR> ok

Generate a flat section, value 1000, starting at sample 251 and ending at 270

WFM->DAC <CR> ok

Send the waveform in RAM to the DAC RAM.

<CR> ok

0WFM <CR> ok

0 3500 0 1500 RAMP <CR> ok

WFM->DAC <CR> ok

Generate a 10us long ramp

<CR> ok

2000 0 500 PULSE <CR> ok

Generate a 2000 high pulse from sample 0 to 500 and immediately send it to the

DAC RAM.

<CR> ok

<CR> ok

100 TWEAK <CR>

Invoke the tweak function starting at sample 100

2 Sample # = 100 , Value = 2000

Typing ‘2’ increases the current sample, 1 will decrease it

2 Sample # = 100 , Value = 2100

2 Sample # = 100 , Value = 2200

2 Sample # = 100 , Value = 2300

2 Sample # = 100 , Value = 2400

4 Sample # = 101 , Value = 2000

Typing ‘4’ moves to the next sample, 3 to the previous one

4 Sample # = 102 , Value = 2000

4 Sample # = 103 , Value = 2000

4 Sample # = 104 , Value = 2000

1 Sample # = 104 , Value = 1900

1 Sample # = 104 , Value = 1800

1 Sample # = 104 , Value = 1700

1 Sample # = 104 , Value = 1600

<esc> ok

Type ‘esc’ to leave the tweak function

The tweak function ignores all keys except 1,2,3,4 and <esc>. 1 and 2 edit the

sample value, 3 and 4 move between samples. The edited sample is immediately

sent to the DAC RAM so the output can be edited in real time. The <esc> key

exits tweak and returns to the Forth operating system.

<CR> ok

<CR> ok

<CR> ok

@WFM0 <CR> ok

Fetch waveform from NVRAM 0 (similarly for @WFM1)

WFM->DAC <CR> ok

Send waveform to DAC RAM

!WFM0 <CR> ok

Store current waveform in NVRAM 0 (similarly for !WFM1)

<CR> ok

@WFM1 <CR> ok

WFM->DAC <CR> ok

<CR> ok

<CR> ok

20 STEPSIZE ! <CR> ok

Reduce the TWEAK step size from 100 (default) to 20

100 TWEAK <CR>

1 Sample # = 100 , Value = 200

1 Sample # = 100 , Value = 220

1 Sample # = 100 , Value = 240

<esc> ok

NB the 1,2,3,4 and <esc> keys are not echoed when in tweak

1000 STEPSIZE ! <CR> ok

100 TWEAK <CR>

1 Sample # = 100 , Value = 1420

1 Sample # = 100 , Value = 2420

1 Sample # = 100 , Value = 3420

1 Sample # = 100 , Value = 2420

<esc> ok

In order to transfer a complete waveform record, binary waveform transfer

functions are provided. These are:

TXWFM, RXWFM and RXWFM->DAC

If these functions are attempted from the keyboard the PLPS may appear to

freeze as it is either waiting for 1500 samples (3kbytes) or is transmitting

3kbytes.

The format of a sample is 12 bit, 2 bytes, LSB first. In practice only 10 bits

are used.

There are some test functions provided, the most useful of which being:

TEST2

After typing this command the PLPS will repeatedly return the state of various

internal power supplies, including the PC bias setting. This process will

continue until the next RS232 character is received.

Note that there is a time constant of a second or so on these voltages so, if

this function is used while adjusting the PC bias voltage, wait long enough for

the voltage to settle before noting a voltage setting.

TEST3 generates a series of small steps which may be useful when characterising

the transfer funtion.

List of the useful commands.

All commands are in upper case and must be followed by <CR>. All commands are

echoed. All arguments are integers and will be clipped. There must be at least

one space between the argument (if required) and the command.

+EN_TRIG
Enable triggering

-EN_TRIG
Disable triggering

WFM->DAC
Send the waveform in RAM to the DAC RAM

0WFM
Zero the waveform in RAM

value SETALL
Set all 1500 samples of the waveform in RAM to ‘value’ and send it to the DAC

RAM

address TWEAK
Enter the TWEAK function, starting at sample number ‘address’

value start end PULSE (V,S,E ---) WFM->DAC ;

Zero the waveform in RAM, produce a pulse of height ‘value’, running from

sample ‘start’ to sample ‘end’ and send it to the DAC RAM

!WFM0
Store the current waveform in RAM in NVRAM 0 - NB this is not necessarily the

same as the waveform in the DAC RAM

@WFM0
Fetch the waveform in NVRAM 0 into RAM

NB if this is not followed by ‘WFM->DAC’ it will not appear at the output.

!WFM1
Store the current waveform in RAM in NVRAM 1 - NB this is not necessarily the

same as the waveform in the DAC RAM

@WFM1
Fetch the waveform in NVRAM 1 into RAM

NB if this is not followed by ‘WFM->DAC’ it will not appear at the output.

startval endval startadd endadd RAMP
Replaces samples ‘startadd’ to ‘endadd’ with a linear ramp from ‘startval’ to

‘endval’. NB ‘WFM->DAC’ is also required to send it to the output.

bias !BIAS
Internal adjustment

?HT
Internal measurement

?20V
Internal measurement

TXWFM
Transmit current waveform in RAM in binary. After the following characters are

sent:

 ‘TXWFM <CR>’ the PLPS replies with:

 ‘TXWFM <CR> followed by 3000 binary characters, two bytes per sample, most

significant byte first, then:

 ‘ ok <CR>’

RXWFM
Receive a binary waveform record into RAM. After the following characters are

sent:

 ‘RXWFM <CR>’ the PLPS replies with:

 ‘RXWFM ‘

It then waits until it has received 3000 bytes then replies with

 ‘ ok <CR>’

RXWFM->DAC
As above except that the waveform is automatically sent to the DAC RAM after

reception.

?SUMWFM
Print the checksum of the waveform in RAM, modulus 2^16

value address !VAL

Store ‘value’ in sample ‘address’ in RAM

NB if this is not followed by ‘WFM->DAC’ it will not appear at the output.

address @VAL
Fetch the value stored in sample ‘address’ onto the Forth stack - NB this is

not necessarily the value in the DAC RAM. To print the value use the Forth

print command ‘.’ :

address @VAL .
Print the value stored in sample ‘address’

This is the Forth source code we used in the host computer (a Mac) to test the

data transfer. It was writen in MacForth from Creative Solutions.

The data is stored locally in ‘tdsbuffer’.

@VALUES gets the current waveform

!VALUES sends the local waveform in the host to the PLPS but does not load it

into the DAC RAM

?SUMVALUES does a local checksum

N ?VALUES prints out N values from the local waveform buffer

RAMP generates a local ramp

EXAMPLE generates a local ramp, sends it to the PLPS and requests the PLPS to

put it in the DAC RAM

anew graphmarker

decimal

30000 minimum.object

: S.KEY (-- char) begin s.?terminal not while ?abort repeat s.key ;

create tdsbuffer 3000 allot

: @VALUES (--) 0S.BUFFER

 " TXWFM" count DUP>R s.type s.cr

 R> 1+ 0 DO S.KEY DROP LOOP

 3000 0 do s.key tdsbuffer i+ c! loop

 5 0 do s.key drop loop ;

: !VALUES (--) 0S.BUFFER

 " RXWFM" count DUP>R s.type s.cr

 R> 1+ 0 DO S.KEY DROP LOOP

 3000 0 do tdsbuffer i+ c@ S.EMIT loop

 5 0 do s.key drop loop ;

: ?SUMVALUES

 (--) 0 3000 0 DO tdsbuffer i+ C@ + LOOP 65535 AND . ;

: ?VALUES 0 DO

i 2* tdsbuffer + c@ 256 *

i 2* tdsbuffer + 1+ c@ + . CR LOOP ;

: RAMP

1500 0 DO i 20 * dup i 2* tdsbuffer + 1 + c!

256 / i 2* tdsbuffer + c! loop ;

: EXAMPLE

RAMP !VALUES

" WFM->DAC" count s.type s.cr

 ;

Below is a quick and dirty BASIC code to do the same sort of thing written in

TrueBasic for the Mac. The red bit uploads the current waveform in PLPS ram.

The following black bit assembles bytes into 12 bit samples and prints a few.

The blue bit generates and sends a ramp using the RXWFM->DAC command which

automatically puts the waveform in the DAC RAM the it then drops into a

terminal emulator loop.

There is no error checking and it will hang if it gets out of phase during an

upload.

If the PLPS hangs due to being sent too few characters after an RXWFM then sent

it carriage returns until it replies with ‘ok’.

DIM values(3000)

LIBRARY "Comlib*"

LET baud = 9600

CALL Com_open (#1, 1, baud, "D8") ! Open comm line at 9600 baud

PRINT " Baud rate = ", baud

PRINT " Type OPTION q to quit"

PRINT " NB - UPPER CASE FOR COMMANDS"

CALL Receive (s$)

LET s$ = ""

LET str$ = "TXWFM"

CALL Send (str$)

CALL Send (Chr$(13))

DO

 CALL Receive (s$)

 LET value$ = value$ & s$

 LET s$ = ""

 IF len(value$) >3005 then EXIT DO

LOOP

! print out the first few values

FOR i = 1 to 20

 PRINT ord(value$[i*2+5:i*2+5])*256 + ord(value$[i*2+6:i*2+6])

NEXT i

LET send$ = " "

FOR i = 1 to 1500

 LET thisvalue = i

 LET msb = int(thisvalue/256)

 LET lsb = thisvalue - msb*256

 LET send$ = send$ & Chr$(msb) & Chr$(lsb)

NEXT i

LET str$ = "RXWFM->DAC"

CALL Send (str$)

CALL Send (Chr$(13))

CALL Send (send$)

DO

 CALL Receive (s$) ! get any input from network

 CALL Output (s$) ! routine to print it on screen

 IF key input then ! get anything the user's typed

 GET KEY k

 SELECT CASE k

 CASE 207 ! option-q -- end session

 STOP

 CASE 186 ! option-b -- send break

 CALL Send_break

 CASE else ! else send to the network

 CALL Send (Chr$(k))

 END SELECT

 END IF

LOOP

SUB Output (s$) ! Handle CR & LF characters

 DO ! first strip all CRs

 LET i = Pos(s$,Chr$(13)) ! find first CR

 IF i = 0 then EXIT DO ! none -- all done

 LET s$[i:i] = "" ! remove the first

 LOOP

 DO ! now end line on line-feed

 LET i = Pos(s$,Chr$(10)) ! find next line-feed

 IF i = 0 then EXIT DO

 PRINT s$[1:i-1] ! print each separate line

 LET s$ = s$[i+1:maxnum] ! remove that line

 LOOP

 PRINT s$; ! print partial line

END SUB

END

Embedded source code (In Forth)

$C000 VDP !

DECIMAL

$FFDC CONSTANT SSR

: ?KEY SSR C@ $40 AND ;

0 VARIABLE P7DATA

0 VARIABLE ADATA

3000 VARIABLE NUMSAMPLES

0 VARIABLE TEMP

0 VARIABLE REG0

0 VARIABLE REG1

0 VARIABLE REG2

0 VARIABLE REG3

0 VARIABLE REG4

0 VARIABLE REG5

0 VARIABLE REG6

0 VARIABLE REG7

0 VARIABLE REG8

0 VARIABLE REG10

0 VARIABLE THIS

0 VARIABLE WFM 4096 ALLOT

0 VARIABLE STEPSIZE

0 VARIABLE SV

0 VARIABLE EV

0 VARIABLE SA

0 VARIABLE EA

: ADATA>A (--) ADATA C@ $81E0 PC! ;

: !A (b --) ADATA C! ADATA>A ;

: @A (-- b) ADATA C@ ;

: 0PORTAB (--) 5 CFIGM ! 5 $81F0 PC! 0 !A ;

: @B (--N) $81D0 PC@ ;

: 0P7 $FF $FF8C C! ; (make P7 outputs)

: !P7 DUP P7DATA ! $FF8E C! ; (write P7)

: @P7 P7DATA @ ;

: +LOADLED

@P7 254 AND !P7 ;

: -LOADLED

@P7 1 OR !P7 ;

: +RECALLED

@P7 253 AND !P7 ;

: -RECALLED

@P7 2 OR !P7 ;

(TO DRIVE EPLD FROM PA)

: !EPLD (n a --)

63 AND 128 + !A

63 AND !A ;

: !REG0 (N--)

DUP REG0 ! 0 !EPLD ;

: !REG1 (N--)

DUP REG1 ! 1 !EPLD ;

: !REG2 (N--)

DUP REG2 ! 2 !EPLD ;

: !REG3 (N--)

DUP REG3 ! 3 !EPLD ;

: !REG4 (N--)

DUP REG4 ! 4 !EPLD ;

: !REG5 (N--)

DUP REG5 ! 5 !EPLD ;

: !REG6 (N--)

DUP REG6 ! 6 !EPLD ;

: !REG7 (N--)

DUP REG7 ! 7 !EPLD ;

: !REG8 (N--)

DUP REG8 ! 8 !EPLD ;

: INTCLK 0 9 !EPLD ;

: !REG10 (N--)

DUP REG8 ! 8 !EPLD ;

: +NCE0 (--)

REG0 @ 1 OR !REG0 ;

: -NCE0 (--)

REG0 @ 255 1 - AND !REG0 ;

: +NOE0 (--)

REG0 @ 2 OR !REG0 ;

: -NOE0 (--)

REG0 @ 255 2 - AND !REG0 ;

: +ALL_NW_LO (--)

REG0 @ 4 OR !REG0 ;

: -ALL_NW_LO (--)

REG0 @ 255 4 - AND !REG0 ;

: +NCE1 (--)

REG0 @ 8 OR !REG0 ;

: -NCE1 (--)

REG0 @ 255 8 - AND !REG0 ;

: +NOE1 (--)

REG0 @ 16 OR !REG0 ;

: -NOE1 (--)

REG0 @ 255 16 - AND !REG0 ;

: +EN_TRIG (--)

REG0 @ 32 OR !REG0 ;

: -EN_TRIG (--)

REG0 @ 255 32 - AND !REG0 ;

: +NCE2 (--)

REG1 @ 1 OR !REG1 ;

: -NCE2 (--)

REG1 @ 255 1 - AND !REG1 ;

: +NOE2 (--)

REG1 @ 2 OR !REG1 ;

: -NOE2 (--)

REG1 @ 255 2 - AND !REG1 ;

: +QSO (--)

REG1 @ 8 OR !REG1 ;

: -QSO (--)

REG1 @ 255 8 - AND !REG1 ;

: +FORCE_TRIG (--)

REG4 @ 1 OR !REG4 ;

: -FORCE_TRIG (--)

REG4 @ 255 1 - AND !REG4 ;

: +INTRESET (--)

REG1 @ 32 OR !REG1 ;

: -INTRESET (--)

REG1 @ 255 32 - AND !REG1 ;

: DATA->EPLD (N N --)

DUP 5 !EPLD

64 / 6 !EPLD

DUP 7 !EPLD

64 / 8 !EPLD ;

: EPLD->RAM

0 10 !EPLD

2 10 !EPLD

4 10 !EPLD ;

: PROGMODE (--)

-QSO +NOE0 +NOE1 +NOE2 -EN_TRIG

0 0 DATA->EPLD EPLD->RAM

-FORCE_TRIG INTCLK -INTRESET ;

: RUNMODE (--)

-FORCE_TRIG

+EN_TRIG

-NOE0

-NOE1

-NOE2

+INTRESET

-INTRESET

+QSO ;

: !ZEROS (N--)

0 0 DATA->EPLD EPLD->RAM

+ALL_NW_LO

0 DO INTCLK LOOP

-ALL_NW_LO ;

: WFM->DAC

+LOADLED

PROGMODE

+INTRESET

-INTRESET

1 !ZEROS

750 0 DO

WFM I 4 * + @ WFM I 4 * + 2 + @

DATA->EPLD EPLD->RAM INTCLK LOOP

400 !ZEROS

RUNMODE

-LOADLED ;

: 0WFM

2048 0 DO 0 WFM I 2* + ! LOOP ;

: +RAMP

1500 0 DO I 1800 1500 */ WFM I 2* + ! LOOP

WFM->DAC ;

: ++RAMP

2048 0 DO I 3 * WFM I 2* + ! LOOP

WFM->DAC ;

: -RAMP

1500 0 DO 1500 I - 3500 1500 */ WFM I 2* + ! LOOP

WFM->DAC ;

: +-RAMP

1024 0 DO

I 4 * WFM I 4 * + !

1023 I - 4 * WFM I 4 * + 2 + !

LOOP

WFM->DAC ;

: SETALL (V--)

1500 0 DO DUP WFM I 2* + ! LOOP DROP

WFM->DAC ;

: .VALS

." Sample # = " THIS @ . ." , Value = " WFM THIS @ 2* + @ . CR ;

: +VAL

WFM THIS @ 0 MAX 1499 MIN 2* + DUP

@ STEPSIZE @ + 4095 MIN SWAP ! .VALS ;

: -VAL

WFM THIS @ 0 MAX 1499 MIN 2* + DUP

@ STEPSIZE @ - 0 MAX SWAP ! .VALS ;

: +THIS

 1 THIS @ + 1499 MIN THIS ! .VALS ;

: -THIS

 -1 THIS @ + 0 MAX THIS ! .VALS ;

: CLOCKS (N--)

0 DO

INTCLK LOOP ;

: VAL->DAC

PROGMODE

+INTRESET

-INTRESET

THIS @ 2/ 1 + CLOCKS

THIS @ 2/ 4 * DUP WFM + @ SWAP 2+ WFM + @

DATA->EPLD EPLD->RAM

RUNMODE ;

: TWEAK (--)

DEPTH 0 = IF 0 THEN

0 MAX 1499 MIN

THIS !

CR .VALS

BEGIN

KEY

 CASE

49 OF -THIS 0 ENDOF

50 OF +THIS 0 ENDOF

51 OF -VAL VAL->DAC 0 ENDOF

52 OF +VAL VAL->DAC 0 ENDOF

27 OF 1 ENDOF

0

ENDCASE UNTIL

CR ." Reloading DACs" WFM->DAC CR ;

: PULSE (V,S,E ---)

0WFM 1500 MIN 1 MAX DUP ROT

SWAP 1 - MIN 0 MAX

DO DUP WFM I 2* + ! LOOP DROP

WFM->DAC ;

(STUFF FOR 24C65)

(SET TO ADDRESS 2)

(WORD ADDRESS DOES NEED TO BE DIVISIBLE BY 2)

: BEAD

 DUP 0 $2000 U/ NIP 2* SWAP $1FFF AND SWAP ;

: EEC! (c addr --)

 $4000 +

 BEAD >R

 DUP >< $A0 R> +

 STARTI2C

 4 0 DO S1BYTE R1BIT DROP

 LOOP STOPI2C 10 MS ;

: EEC@ (addr -- c)

 $4000 +

 BEAD DUP >R

 $A0 + STARTI2C

 S1BYTE R1BIT DROP

 DUP >< S1BYTE R1BIT DROP

 S1BYTE R1BIT DROP

 $A1 R> + STARTI2C S1BYTE

 R1BIT DROP

 R1BYTE STOPI2C ;

: S8-> DUP 0< 128 * SWAP $7FFF AND 256 / + ; (N -- N SHIFT R 8 BITS)

: EE! (WORD ADDRESS --)

DUP 1+ ROT DUP $FF AND ROT EEC!

S8-> SWAP EEC! ;

: EE@ (ADDRESS -- WORD)

DUP EEC@ $100 * SWAP 1+ EEC@ + ;

: !WFM0 +RECALLED

1500 0 DO I 2* WFM + @ I 2* EE! LOOP -RECALLED ;

: @WFM0 +RECALLED

1500 0 DO I 2* EE@ WFM I 2* + ! LOOP -RECALLED ;

: !WFM1 +RECALLED

1500 0 DO I 2* WFM + @ I 2* 3000 + EE! LOOP -RECALLED ;

: @WFM1 +RECALLED

1500 0 DO I 2* 3000 + EE@ WFM I 2* + ! LOOP -RECALLED ;

: +RAMP

2048 0 DO I 2* WFM I 2* + ! LOOP

WFM->DAC ;

: RAMP (SV EV SA EA --)

0 MAX 1500 MIN DUP EA !

SWAP MIN SA !

EV ! SV !

EA @ 1+ SA @ DO

I SA @ - EV @ SV @ - EA @ SA @ - */ SV @ +

WFM I 2* + ! LOOP ;

: !BIAS

0 MAX 250 MIN 0 D-A ;

: @SW (--B)

@B 192 AND ;

: INIT

125 !BIAS

0PORTAB

0P7

0 !A

0 !REG0

0 !REG0

0 !REG1

0 !REG2

0 !REG3

0 !REG4

0 !REG5

0 !REG6

0 !REG7

0 !REG8

0 !REG10

100 STEPSIZE !

PROGMODE

1500 !ZEROS

-RECALLED

RUNMODE

+FORCE_TRIG -FORCE_TRIG

@SW 128 = IF @WFM1 THEN

@SW 64 = IF @WFM0 THEN

@SW 192 = IF 0WFM THEN

WFM->DAC

3000 NUMSAMPLES !

 ;

: TXbytes (addr # --) OVER + SWAP DO I C@ EMIT LOOP ;

: RXbytes (addr # --) OVER + SWAP DO (KEY) I C! LOOP ;

: TXWFM (--) WFM NUMSAMPLES @ TXbytes ;

: RXWFM (--) WFM NUMSAMPLES @ RXbytes ;

: RXWFM->DAC (--) WFM NUMSAMPLES @ RXbytes WFM->DAC ;

: ?SUMWFM (--) 0 NUMSAMPLES @ 0 DO WFM I + C@ + LOOP U. ;

: !VAL (V,A --)

0 MAX 1499 MIN 2* WFM + ! ;

: @VAL (A -- V)

0 MAX 1499 MIN 2* WFM + @ ;

: !VAL->DAC (V,A --)

0 MAX 1499 MIN DUP THIS ! 2* WFM + !

VAL->DAC ;

: TEST0 (--)

(CYCLE DATA BUS FROM TDS)

BEGIN TEMP @ 1+ DUP TEMP ! !A ?KEY UNTIL ;

: TEST1 (--)

(MAKES RAM DATA TOGGLE)

0 10 !EPLD

BEGIN

63 5 !EPLD

0 6 !EPLD

0 7 !EPLD

63 8 !EPLD

100 MS

0 5 !EPLD

63 6 !EPLD

63 7 !EPLD

0 8 !EPLD

100 MS ?KEY UNTIL ;

: TEST2 (--)

BEGIN CR

0 A-D 21000 653 */ . ." MV " CR

1 A-D 512 - 197 60 */ . ." VOLTS BIAS " CR

2 A-D 1340 278 */ . ." VOLTS " CR

1000 MS ?KEY UNTIL ;

: TEST3 (--)

(STEPS)

0WFM

20 0 DO

I 100 * DUP I 1 - 100 * DUP 100 + RAMP LOOP

WFM->DAC ;

: ?20V 0 A-D 21000 653 */ . ." mV" CR ;

: ?BIAS 1 A-D 512 - 197 60 */ . ." VOLTS BIAS " CR ;

: ?HT 2 A-D 1340 278 */ . ." Volts" CR ;

: -FORTH 0 [' FORTH NFA] LITERAL C! ; (needed to get cold start)

: BANNER CR

." Programmable Laser Pulse Shaper" CR

." Copyright Kentech Instruments Ltd 2003" CR

." Firmware V1.0 " CR ;

: ABORT (initialisation of Forth system, falling into interpret loop

 SP!

 DECIMAL 0 OFFSET !

 [COMPILE] FORTH DEFINITIONS QUIT ;

: 0VARIABLES

 $C000 1- $FB80 $0A +ORIGIN ! (dictionary full when it meets

ram

 $8800 DP ! $8800 FENCE ! (set base of dictionary

 0 BLK ! 0 IN ! 0 OUT ! (

 0 SCR ! 0 OFFSET ! 0 STATE ! (set a few user variables

 -1 DPL ! 0 CSP ! 0 R# ! 0 HLD ! (

 ; (get context, current right

: GO 9600 BAUD 0VARIABLES BANNER INIT -FORTH ABORT ;

SET GO

